Positive Steady States of a Strongly Coupled Predator-Prey System with Holling-(n+1) Functional Response

نویسندگان

  • Xiao-zhou Feng
  • Zhi-Guo Wang
چکیده

This paper discusses a predator-prey system with Holling-(n + 1) functional response and the fractional type nonlinear diffusion term in a bounded domain under homogeneous Neumann boundary condition.The existence and nonexistence results concerning nonconstant positive steady states of the system were obtained. In particular, we prove that the positive constant solution (?̃?, Ṽ) is asymptotically stable when the parameter k satisfies some conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Steady State Solutions of a Diffusive Leslie-gower Predator-prey Model with Holling Type Ii Functional Response and Cross-diffusion

In this paper we consider a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion under zero Dirichlet boundary condition. By using topological degree theory, bifurcation theory, energy estimates and asymptotic behavior analysis, we prove the existence, uniqueness and multiplicity of positive steady states solutions under certain conditions on t...

متن کامل

Stability analysis of a fractional order prey-predator system with nonmonotonic functional response

In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...

متن کامل

Periodic Solutions and Stability for a Delayed Discrete Ratio-dependent Predator-prey System with Holling-type Functional Response

The existence of positive periodic solutions for a delayed discrete predator-prey model with Holling-type-III functional responseN1(k+1)=N1(k)exp{b1(k)−a1(k)N1(k− [τ1]) −α1(k)N1(k)N2(k)/(N 1 (k) +m2N 2 (k))}, N2(k + 1) = N2(k)exp{−b2(k) + α2(k)N 1 (k − [τ2])/(N 1 (k − [τ2]) + m2N 2 (k − [τ2]))} is established by using the coincidence degree theory. We also present sufficient conditions for the ...

متن کامل

Global stability and stationary pattern of a diffusive prey-predator model with modified Leslie-Gower term and Holling II functional response

This paper is concerned with a diffusive prey-predator model with modified Leslie-Gower term and Holling II functional response subject to the homogeneous Neumann boundary condition. Firstly, by upper and lower solutions method, we prove the global asymptotic stability of the unique positive constant steady state solution. Secondly, introducing the cross diffusion, we obtain the existence of no...

متن کامل

Threshold harvesting policy and delayed ratio-dependent functional response predator-prey model

This paper deals with a delayed ratio-dependent functional response predator-prey model with a threshold harvesting policy. We study the equilibria of the system before and after the threshold. We show that the threshold harvesting can improve the undesirable behavior such as nonexistence of interior equilibria. The global analysis of the model as well as boundedness and permanence properties a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013